Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Sulfur transfer through an arbuscular mycorrhiza.

Identifieur interne : 002879 ( Main/Exploration ); précédent : 002878; suivant : 002880

Sulfur transfer through an arbuscular mycorrhiza.

Auteurs : James W. Allen [États-Unis] ; Yair Shachar-Hill

Source :

RBID : pubmed:18978070

Descripteurs français

English descriptors

Abstract

Despite the importance of sulfur (S) for plant nutrition, the role of the arbuscular mycorrhizal (AM) symbiosis in S uptake has received little attention. To address this issue, 35S-labeling experiments were performed on mycorrhizas of transformed carrot (Daucus carota) roots and Glomus intraradices grown monoxenically on bicompartmental petri dishes. The uptake and transfer of 35SO4(2-) by the fungus and resulting 35S partitioning into different metabolic pools in the host roots was analyzed when altering the sulfate concentration available to roots and supplying the fungal compartment with cysteine (Cys), methionine (Met), or glutathione. Additionally, the uptake, transfer, and partitioning of 35S from the reduced S sources [35S]Cys and [35S]Met was determined. Sulfate was taken up by the fungus and transferred to mycorrhizal roots, increasing root S contents by 25% in a moderate (not growth-limiting) concentration of sulfate. High sulfate levels in the mycorrhizal root compartment halved the uptake of 35SO4(2-) from the fungal compartment. The addition of 1 mm Met, Cys, or glutathione to the fungal compartment reduced the transfer of sulfate by 26%, 45%, and 80%, respectively, over 1 month. Similar quantities of 35S were transferred to mycorrhizal roots whether 35SO4(2-), [35S]Cys, or [35S]Met was supplied in the fungal compartment. Fungal transcripts for putative S assimilatory genes were identified, indicating the presence of the trans-sulfuration pathway. The suppression of fungal sulfate transfer in the presence of Cys coincided with a reduction in putative sulfate permease and not sulfate adenylyltransferase transcripts, suggesting a role for fungal transcriptional regulation in S transfer to the host. A testable model is proposed describing root S acquisition through the AM symbiosis.

DOI: 10.1104/pp.108.129866
PubMed: 18978070
PubMed Central: PMC2613693


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Sulfur transfer through an arbuscular mycorrhiza.</title>
<author>
<name sortKey="Allen, James W" sort="Allen, James W" uniqKey="Allen J" first="James W" last="Allen">James W. Allen</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA. allenj28@msu.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824</wicri:regionArea>
<orgName type="university">Université d'État du Michigan</orgName>
<placeName>
<settlement type="city">East Lansing</settlement>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shachar Hill, Yair" sort="Shachar Hill, Yair" uniqKey="Shachar Hill Y" first="Yair" last="Shachar-Hill">Yair Shachar-Hill</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:18978070</idno>
<idno type="pmid">18978070</idno>
<idno type="doi">10.1104/pp.108.129866</idno>
<idno type="pmc">PMC2613693</idno>
<idno type="wicri:Area/Main/Corpus">002B38</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002B38</idno>
<idno type="wicri:Area/Main/Curation">002B38</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002B38</idno>
<idno type="wicri:Area/Main/Exploration">002B38</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Sulfur transfer through an arbuscular mycorrhiza.</title>
<author>
<name sortKey="Allen, James W" sort="Allen, James W" uniqKey="Allen J" first="James W" last="Allen">James W. Allen</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA. allenj28@msu.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824</wicri:regionArea>
<orgName type="university">Université d'État du Michigan</orgName>
<placeName>
<settlement type="city">East Lansing</settlement>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shachar Hill, Yair" sort="Shachar Hill, Yair" uniqKey="Shachar Hill Y" first="Yair" last="Shachar-Hill">Yair Shachar-Hill</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="ISSN">0032-0889</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Daucus carota (metabolism)</term>
<term>Daucus carota (microbiology)</term>
<term>Glomeromycota (genetics)</term>
<term>Glomeromycota (metabolism)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mycorrhizae (genetics)</term>
<term>Mycorrhizae (metabolism)</term>
<term>Plant Roots (microbiology)</term>
<term>RNA, Fungal (metabolism)</term>
<term>Sulfur (metabolism)</term>
<term>Symbiosis (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN fongique (métabolisme)</term>
<term>Daucus carota (microbiologie)</term>
<term>Daucus carota (métabolisme)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Glomeromycota (génétique)</term>
<term>Glomeromycota (métabolisme)</term>
<term>Mycorhizes (génétique)</term>
<term>Mycorhizes (métabolisme)</term>
<term>Racines de plante (microbiologie)</term>
<term>Soufre (métabolisme)</term>
<term>Symbiose (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>RNA, Fungal</term>
<term>Sulfur</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Glomeromycota</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glomeromycota</term>
<term>Mycorhizes</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Daucus carota</term>
<term>Glomeromycota</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Daucus carota</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Daucus carota</term>
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN fongique</term>
<term>Daucus carota</term>
<term>Glomeromycota</term>
<term>Mycorhizes</term>
<term>Soufre</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Symbiose</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Molecular Sequence Data</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Données de séquences moléculaires</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Despite the importance of sulfur (S) for plant nutrition, the role of the arbuscular mycorrhizal (AM) symbiosis in S uptake has received little attention. To address this issue, 35S-labeling experiments were performed on mycorrhizas of transformed carrot (Daucus carota) roots and Glomus intraradices grown monoxenically on bicompartmental petri dishes. The uptake and transfer of 35SO4(2-) by the fungus and resulting 35S partitioning into different metabolic pools in the host roots was analyzed when altering the sulfate concentration available to roots and supplying the fungal compartment with cysteine (Cys), methionine (Met), or glutathione. Additionally, the uptake, transfer, and partitioning of 35S from the reduced S sources [35S]Cys and [35S]Met was determined. Sulfate was taken up by the fungus and transferred to mycorrhizal roots, increasing root S contents by 25% in a moderate (not growth-limiting) concentration of sulfate. High sulfate levels in the mycorrhizal root compartment halved the uptake of 35SO4(2-) from the fungal compartment. The addition of 1 mm Met, Cys, or glutathione to the fungal compartment reduced the transfer of sulfate by 26%, 45%, and 80%, respectively, over 1 month. Similar quantities of 35S were transferred to mycorrhizal roots whether 35SO4(2-), [35S]Cys, or [35S]Met was supplied in the fungal compartment. Fungal transcripts for putative S assimilatory genes were identified, indicating the presence of the trans-sulfuration pathway. The suppression of fungal sulfate transfer in the presence of Cys coincided with a reduction in putative sulfate permease and not sulfate adenylyltransferase transcripts, suggesting a role for fungal transcriptional regulation in S transfer to the host. A testable model is proposed describing root S acquisition through the AM symbiosis.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18978070</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>03</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0032-0889</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>149</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2009</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Sulfur transfer through an arbuscular mycorrhiza.</ArticleTitle>
<Pagination>
<MedlinePgn>549-60</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.108.129866</ELocationID>
<Abstract>
<AbstractText>Despite the importance of sulfur (S) for plant nutrition, the role of the arbuscular mycorrhizal (AM) symbiosis in S uptake has received little attention. To address this issue, 35S-labeling experiments were performed on mycorrhizas of transformed carrot (Daucus carota) roots and Glomus intraradices grown monoxenically on bicompartmental petri dishes. The uptake and transfer of 35SO4(2-) by the fungus and resulting 35S partitioning into different metabolic pools in the host roots was analyzed when altering the sulfate concentration available to roots and supplying the fungal compartment with cysteine (Cys), methionine (Met), or glutathione. Additionally, the uptake, transfer, and partitioning of 35S from the reduced S sources [35S]Cys and [35S]Met was determined. Sulfate was taken up by the fungus and transferred to mycorrhizal roots, increasing root S contents by 25% in a moderate (not growth-limiting) concentration of sulfate. High sulfate levels in the mycorrhizal root compartment halved the uptake of 35SO4(2-) from the fungal compartment. The addition of 1 mm Met, Cys, or glutathione to the fungal compartment reduced the transfer of sulfate by 26%, 45%, and 80%, respectively, over 1 month. Similar quantities of 35S were transferred to mycorrhizal roots whether 35SO4(2-), [35S]Cys, or [35S]Met was supplied in the fungal compartment. Fungal transcripts for putative S assimilatory genes were identified, indicating the presence of the trans-sulfuration pathway. The suppression of fungal sulfate transfer in the presence of Cys coincided with a reduction in putative sulfate permease and not sulfate adenylyltransferase transcripts, suggesting a role for fungal transcriptional regulation in S transfer to the host. A testable model is proposed describing root S acquisition through the AM symbiosis.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Allen</LastName>
<ForeName>James W</ForeName>
<Initials>JW</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA. allenj28@msu.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shachar-Hill</LastName>
<ForeName>Yair</ForeName>
<Initials>Y</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>FJ161947</AccessionNumber>
<AccessionNumber>FJ161948</AccessionNumber>
<AccessionNumber>FJ161949</AccessionNumber>
<AccessionNumber>FJ161950</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>10</Month>
<Day>31</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012331">RNA, Fungal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>70FD1KFU70</RegistryNumber>
<NameOfSubstance UI="D013455">Sulfur</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018552" MajorTopicYN="N">Daucus carota</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055137" MajorTopicYN="N">Glomeromycota</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012331" MajorTopicYN="N">RNA, Fungal</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013455" MajorTopicYN="N">Sulfur</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>11</Month>
<Day>4</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>3</Month>
<Day>4</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>11</Month>
<Day>4</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18978070</ArticleId>
<ArticleId IdType="pii">pp.108.129866</ArticleId>
<ArticleId IdType="doi">10.1104/pp.108.129866</ArticleId>
<ArticleId IdType="pmc">PMC2613693</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Gen Genet. 2000 Apr;263(3):535-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10821189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2006 Sep;16(6):421-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16596384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1995 Jan;15(1):208-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7799928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2001 May 28;1519(1-2):78-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11406274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bacteriol Rev. 1976 Sep;40(3):698-721</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">791238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2003 Apr 11;1647(1-2):30-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12686104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jun 9;435(7043):819-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15944705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1991 Nov;7(8):843-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1789005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 1997 Dec;61(4):503-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9409150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1992 May;174(10):3339-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1577698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 1997;51:73-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9343344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 1993;47:31-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8257101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2006 Jul;16(5):299-363</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2002 Jan 15;19(1):29-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11754480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2008 May 28;56(10):3538-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18457399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Dec;168(3):687-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16313650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2008 Feb;23(2):95-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18191280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1975 Nov;124(2):893-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1102536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2007 Aug;44(8):715-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17223367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1988 Apr;8(4):1504-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2898097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1977 Oct;132(1):224-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">199574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2002 Jun 15;36(12):2614-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12099457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1983 May;72(1):204-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16662961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1997 Dec;32(6):408-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9388296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1970 Nov;46(5):720-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16657536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2007 Sep;9(5):620-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17853362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2003 Aug;49(4):1081-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12890030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Qual. 2004 Jul-Aug;33(4):1387-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15254121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Jun;120(2):587-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10364411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1992 Apr;21(4-5):285-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1525856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1999 Jul;35(6):638-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10467009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1997 Mar;145(3):627-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9055073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1960 Nov;77(2):305-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16748848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 2000 Jun;51:141-165</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1991 Feb 19;30(7):1780-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1825178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1999 Sep 30;15(13):1365-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10509018</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Michigan</li>
</region>
<settlement>
<li>East Lansing</li>
</settlement>
<orgName>
<li>Université d'État du Michigan</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Shachar Hill, Yair" sort="Shachar Hill, Yair" uniqKey="Shachar Hill Y" first="Yair" last="Shachar-Hill">Yair Shachar-Hill</name>
</noCountry>
<country name="États-Unis">
<region name="Michigan">
<name sortKey="Allen, James W" sort="Allen, James W" uniqKey="Allen J" first="James W" last="Allen">James W. Allen</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002879 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002879 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:18978070
   |texte=   Sulfur transfer through an arbuscular mycorrhiza.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:18978070" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020